Can matrix coherence be efficiently and accurately estimated?
نویسندگان
چکیده
Matrix coherence has recently been used to characterize the ability to extract global information from a subset of matrix entries in the context of low-rank approximations and other sampling-based algorithms. The significance of these results crucially hinges upon the possibility of efficiently and accurately testing this coherence assumption. This paper precisely addresses this issue. We introduce a novel sampling-based algorithm for estimating coherence, present associated estimation guarantees and report the results of extensive experiments for coherence estimation. The quality of the estimation guarantees we present depends on the coherence value to estimate itself, but this turns out to be an inherent property of samplingbased coherence estimation, as shown by our lower bound. In practice, however, we find that these theoretically unfavorable scenarios rarely appear, as our algorithm efficiently and accurately estimates coherence across a wide range of datasets, and these estimates are excellent predictors of the effectiveness of sampling-based matrix approximation on a case-by-case basis. These results are significant as they reveal the extent to which coherence assumptions made in a number of recent machine learning publications are testable.
منابع مشابه
On the Estimation of Coherence
Low-rank matrix approximations are often used to help scale standard machine learning algorithms to large-scale problems. Recently, matrix coherence has been used to characterize the ability to extract global information from a subset of matrix entries in the context of these low-rank approximations and other sampling-based algorithms, e.g., matrix completion, robust PCA. Since coherence is def...
متن کاملRole of Kaplan’s Preference Matrix in the Assessment of Building façade, Case of Gorgan, Iran
Buildings play a key role in organization and arrangement of city appearance. Specially, their facades have profound impact on the quality of urban landscapes while playing an important role in assessing urban environments by citizens. The introduction of superior building facades in terms of popular preferences is mostly based on visual elements of building facades. Furthermore, aesthetic pref...
متن کاملCAMA: Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation
We present a novel GPU-based approach to robustly and efficiently simulate high-resolution and complexly layered cloth. The key component of our formulation is a parallelized matrix assembly algorithm that can quickly build a large and sparse matrix in a compressed format and accurately solve linear systems on GPUs. We also present a fast and integrated solution for parallel collision handling,...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملFunctional connectivity: Shrinkage estimation and randomization test
We develop new statistical methods for estimating functional connectivity between components of a multivariate time series and for testing differences in functional connectivity across experimental conditions. Here, we characterize functional connectivity by partial coherence, which identifies the frequency band (or bands) that drives the direct linear association between any pair of components...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011